Binding Properties of Two New Hemicarcerands Whose Hemicarceplexes Undergo Chemical Reactions without Guest Release ${ }^{1,2}$

Clark N. Eid, Jr., ${ }^{3}$ Carolyn B. Knobler, Dana A. Gronbeck, and Donald J. Cram*
Contribution from the Department of Chemistry and Biochemistry, University of California 405 Hilgard Avenue, Los Angeles, California 90024-1569

Received April 25, $1994{ }^{*}$

Abstract

New hemicarcerands $\mathbf{1}$ and $\mathbf{2}$ were prepared in 2-10 and 25% shell closure yields from tetrol $\mathbf{3}$ and TsOCH2 $\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OTs}$, and tetrol 3 and cis- $\mathrm{ClCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}$, respectively. One-to-one carceplexes $\mathbf{1} \cdot 1,4$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{1} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}, 1 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCF}_{3}, \mathbf{1} \cdot \mathrm{CHCl}_{3}, 1 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathbf{1} \cdot \mathrm{BrCH}_{2} \mathrm{CH}^{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ were formed by heating empty 1 in guest as solvent and characterized. The decomplexation rates in CDCl_{3} of the first three complexes were measured at four temperatures to give ΔG^{*} values of $21.5,21.9$, and $23.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, as well as ΔH^{*} and ΔS^{*} values. Hemicarceplexes $2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}, 2 \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}, 2 \cdot 1,4 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and $\mathbf{2} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ were prepared by heating the mixture of complexes from shell closure in the desired guest as solvent. The new complexes were isolated and characterized, and their decomplexation rates were measured in CDCl_{3}. The crystal structures of 1. $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ and $2 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ revealed that the hosts are untwisted and their interhemispheric bridges are oriented to maximize the cavity size. In the former, the guest occupies the torrid zones of the globe-shaped cavity, whereas the long axes of host and guest in the latter were roughly aligned. The $\mathrm{O}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ bond angles in the bridges of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ ranged from 99° to 105° and from 172° to 175°, respectively. Reduction of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ and $1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ with $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ gave $3 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ and $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, respectively.

Previous papers in this series reported the syntheses and binding properties of hemicarcerands 3^{4} and 4^{5} and crystal structures of some of their hemicarceplexes. These two systems each possess four portals composed of 26 -membered rings, which connect their inside phases with external bulk phases in which both host and guest are soluble. The portals and cavities of 3 and 4 are appropriately sized to allow guests that range from $\mathrm{CH}_{3} \mathrm{CN}$ to $1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ to enter and exit the inner phases of 3 and 4 at higher temperatures, but to allow the complexes to be manipulated in solution at ambient temperatures without dissociation. Hosts 3 and 4 exhibited large differences both with regard to structural recognition of guests and in the types of conformations occupied in their carceplexes. The crystal structures of 3-guests generally possessed conformations in which the rigid polar caps were untwisted about their common polar axis, but the conformations of the $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ connecting groups adjusted to guest size by each chain controlling its own length. ${ }^{4}$ In contrast, a crystal structure of 4 -guest (4.G) showed the polar caps twisted with respect to one another, which closed the portals and minimized the cavity size. ${ }^{5}$ In a separate study, the guests of 3.G were oxidized and reduced by reagents dissolved in the same bulk solvent. ${ }^{6}$

In the present paper, we report the syntheses and binding properties of 1 and 2 , which also contain 26 -membered ring portals but whose respective $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{O}$ and cis- $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}$ $\mathrm{HCH}_{2} \mathrm{O}$ bridges possess widely different conformational constraints from one another and from 3 and 4. (See Chart 1.) We particularly wished to learn if reactions could be carried out on the host of 1-G without loss of guest in the process.

[^0]
Results

Syntheses. The shell closures in the synthesis of 1.G were conducted at high dilution by the reaction of tetraphenol 5^{7} (Chart 2) and 1,4-dichloro-2-butyne at $60^{\circ} \mathrm{C}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ or $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{NCHO}-\mathrm{Cs}_{2} \mathrm{CO}_{3}$ containing KI as catalyst. This procedure gave poor and variable yields of $1(0-20 \%)$. The poor yields in these shell closures probably reflect the sensitivity of propargyl functionalities to alkyne-allene rearrangements. Substitution of 1,4-(ditosyloxy)-2-butyne for the dichloride, decreasing the temperature of the reaction to $25^{\circ} \mathrm{C}$, and substituting $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ for $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ gave 1 in the synthesis in more consistent yields (6.5\%). The product was purified by chromatography on silica gel to give $1 \cdot \mathrm{CHCl}_{3}$. Dichloromethane and chloroform leave and enter the inner phase of 1 at ambient temperature rapidly on the human time scale, but slowly on the ${ }^{1} \mathrm{H}$ NMR time scale. Even when the reaction was conducted in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$, guest-solvent exchange occurred during isolation of the product.
The synthesis of $2 \cdot \mathrm{G}$ involved the shell closure of 5 with cis-1,4-dichloro-2-butene in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}-\mathrm{Cs}_{2} \mathrm{CO}_{3}$ at $60^{\circ} \mathrm{C}$ for 5 days (high dilution). The product (2.G) was isolated as a 20:1 molar ratio of $2 \cdot \mathrm{CHCl}_{3}$ to $2 \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$, guest exchange of $2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$ having occurred during silica gel chromatography and solvent evaporation.

New hemicarceplexes were formed by heating solutions of 1. CHCl_{3} or $2 \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$ in potential guests as solvent at $100-135^{\circ} \mathrm{C}$. The solutions were cooled, and the new complexes were precipitated with hexane, collected, and dried $\left(100^{\circ} \mathrm{C}\right.$ at 10^{-5} Torr for 18 h). Empty 1 was prepared by heating $1 \cdot \mathrm{CHCl}_{3}$ in CCl_{4} at $77^{\circ} \mathrm{C}$ for 24 h . The molecules of this solvent are too large to enter the portal of 1 . This hemicarcerand and the hemicarceplexes were isolated by the above precipitation method. The following compounds were prepared and fully characterized: 1; $\mathbf{1} \cdot \mathrm{CHCl}_{3} ; \mathbf{1} \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2} ; \mathbf{1} \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{1} \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$; 1-1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$; 1-((S)-(+)-1-bromo-2-methylbutane; 2. $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{NCOCH}_{3} ; 2 \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3} ; 2 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$; and 2.1,4- $\left(\mathrm{CH}_{3}\right)_{2}$ $\mathrm{C}_{6} \mathrm{H}_{4}$.

[^1]
Chart 1

Chart 2

Attempts to isolate hemicarceplexes of 1 with the following guests failed: toluene; dichloromethane; carbon tetrachloride; 2-methyl-3-hydroxypropanoic acid, 1,4-dimethyl-2,3,5,6-tetrafluorobenzene, 1,4 -bis(trifluoromethyl)benzene, 4-ethyltoluene, 1,4-diethylbenzene, adamantane, [2.2]paracyclophane, and N, N dimethylacetamide. Hemicarcerand 2 failed to form a complex

with CCl_{4} or 4-ethyltoluene. Examinations of CPK models of 1 and 2 and potential guests suggest that $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ goes in and out of the inner phase too easily to allow its complexes to be isolated, whereas the other guests were too large to enter the portals of 1 and 2 under the conditions employed or too large to fit into the interior of these container compounds.

When shaken in benzene solution with $\mathrm{H}_{2} \mathrm{PdC}$ for $4 \mathrm{~h}, \mathbf{1} \cdot 1,4$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ gave respectively $\mathbf{3} \cdot 1,4$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $3 . \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}(\sim 80 \%$ yields) without loss of guest. The sample of $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ produced by this reduction was identical in its FAB MS and ${ }^{1} \mathrm{H}$ NMR spectra to authentic material prepared from 3 and $1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} .{ }^{5}$ Complex $3 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ is new and was fully characterized. Attempts to synthesize $3 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ by heating 3 in CHCl_{2} CHCl_{2} at $150^{\circ} \mathrm{C}$ for 3 days failed to give the complex. ${ }^{5}$

Spectra of Hosts, Guests, and Complexes. The $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of empty 1 and 2 and their complexes were examined in CDCl_{3} at $25^{\circ} \mathrm{C}$. The chemical shifts of most of the hydrogens

Table 1. Chemical Shifts (in ppm) Relative to a Tetramethylsilane as Standard in the $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectra in CDCl_{3} at $25^{\circ} \mathrm{C}$ of Hosts 1 and 2 and Their Complexes

structures		chemical shifts ${ }^{\text {a }}$						
host	guest	$\mathrm{H}^{\text {i }}$	H°	$\mathrm{H}^{\mathbf{a}}$	$\mathrm{H}^{\text {b }}$	$\mathrm{H}^{\text {m }}$	H^{r}	$\mathrm{H}^{\text {c }}$
1	none	4.50	5.91	6.77	4.85	4.80		
1	CDCl_{3}	4.16	6.12	6.79	4.76	4.80		
1	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	4.34	6.06	6.79	4.79	4.80		
1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$	4.25	6.05	6.79	4.79	4.82		
1	1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4.18	5.90	6.87	4.55	4.83		
1	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$	4.15	5.85	6.91	4.65	4.81		
1	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCF}_{3}$	4.23	5.85	7.11	4.64	4.81		
2	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	4.22	5.81	6.86	4.55	4.82	6.02	
2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$	$4.19{ }^{\text {b }}$	5.83	6.83	4.56	4.83	6.03	
2	1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4.09	5.70	6.91	4.37	4.88	6.00	
2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	4.05	5.68	6.94	4.45	4.85	6.01	
3	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	4.37	5.79	6.80	3.92	4.80		1.95
3	1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4.12	5.66	6.87	3.85	4.85		1.87

${ }^{\text {a }}$ See structures 1-3 for proton labels. ${ }^{b}$ The coalescence temperature was below $25^{\circ} \mathrm{C}$, and a second signal was found at 4.12 ppm .
attached to the global parts of the hosts (labeled in 1 and 2) changed upon complexation and are recorded in Table 1. The hydrogens attached to the 2-phenylethyl "feet" were not affected by complexation and are omitted.

Table 2 records the chemical shifts in the $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra of incarcerated and free guests, as well as their differences ($\Delta \delta$) due to incarceration in hosts 1 and 2 in CDCl_{3}. Values for two guests of $\mathbf{3}$ are included for comparison. ${ }^{5}$

Rates and Equilibria Involving Carcerand 1. A solution of 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ provided a single set of signals for the host 1 , indicating that $1 \cdot \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was the only species present or that the complex equilibrated with 1 and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ rapidly on the ${ }^{1} \mathrm{H}$ NMR time scale at $25^{\circ} \mathrm{C}$ to give an averaged spectrum. Interestingly, a solution of $\mathbf{1} \cdot \mathrm{CDCl}_{3}$ provided 39% of $1 \cdot \mathrm{CDCl}_{3}$ and 61% of free 1 at ambient temperature. This composition changed with temperature and was studied making use of the differences in the ${ }^{1} \mathrm{H}$ NMR spectral signals of free 1 and $1 \cdot \mathrm{CDCl}_{3}$ (see Table 1). A plot of $\left[\mathrm{H} \cdot \mathrm{CDCl}_{3}\right] /\left([\mathrm{H}]+\left[\mathrm{H} \cdot \mathrm{CDCl}_{3}\right]\right)$ against temperature (K) from 294.4 to 328.3 K was reasonably linear (eight points, $R^{2}=0.978$).

The first-order decomplexation rates of $1 \cdot G$ in CDCl_{3} were measured at four convenient temperatures where $\mathrm{G}=\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, $\mathrm{G}=\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$, and $\mathrm{G}=1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, making use of the large difference in the ${ }^{1} \mathrm{H}$ NMR signals of free and incarcerated guest. Table 3 records the temperatures, half-lives, and rate constants, whereas Table 4 provides the values of the activation parameters, $\Delta H^{\ddagger}, \Delta S^{\ddagger}$, and ΔG^{\ddagger} at 298 K calculated from the rate constant's dependence on temperature. The mechanism of the reaction is assumed to involve dissociation of host and guest as the rate-determining step, as was demonstrated for 4-G in a variety of solvents. ${ }^{4}$ Qualitative observations regarding the times required for equilibrium to be reached between guest-solvent and 1.G indicate dissociation of 1.G to be the slow step, followed by rapid equilibration between free 1 and $1 \cdot \mathrm{CDCl}_{3}$ for the kinetics studied in CDCl_{3}.

Crystal Structures. Crystals of $\mathbf{1} \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ were grown from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}-\mathrm{CHCl}_{3}$ solution to give 1. $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{5}-$ NO_{2}. In the crystal structure ($R=0.169$) the $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ molecule is located in the inner phase. The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ molecules were present as solvates, one packed between each of the four $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}$ appendages, with its nitro group facing inward, and the other two were located in adjacent regions. The host is centrosymmetric, and the $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ occupies two positions related by this center, each at half-occupancy, with their Cl atoms disordered about the three possible positions attached to their carbon atoms. Side and top stereoviews are given in 1a and 1b, respectively, of Chart 3 , in which the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ molecules located between and around the feet are omitted. The partial views along the polar axis (1b) of the hemicarceplex omit all of the host as

Table 2. Changes in Chemical Shifts of ${ }^{1} \mathrm{H}$ NMR Spectral Signals in CDCl_{3} at $25^{\circ} \mathrm{C}$ of Free and Incarcerated Guests in Hosts 1 and 2

structures		chemical shift			
		$\begin{aligned} & \hline \text { guest } \\ & \text { atom } \end{aligned}$	$\begin{gathered} \text { free } \\ \delta \end{gathered}$	$\begin{gathered} \text { compl. } \\ \delta \end{gathered}$	$\Delta \delta$
host	guest				
1	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	$\mathrm{H}^{\text {a }}$	5.99	4.30	1.69
1	$\mathrm{CH}_{3}^{\mathrm{a}} \mathrm{CH}_{2}^{\mathrm{b}} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}^{\text {a }} \mathrm{Br}$	$\mathrm{H}^{\text {a }}$	0.89	-2.77	3.66
		$\mathrm{H}^{\text {b }}$	1.26	1.26	1.52
		$\mathrm{H}^{\text {b }}$	1.46	-0.68	2.14
		$\mathrm{H}^{\text {c }}$	1.08	-0.03	1.11
		$\mathrm{H}^{\text {d }}$	1.69	0.12	1.57
		$\mathrm{H}^{\text {e }}$	3.30	1.40	1.90
		$\mathrm{H}^{\text {e }}$	3.38	1.87	1.51
1	$\stackrel{\circ}{4}$	$\mathrm{H}^{\text {a }}$	2.30	-1.66	3.96
	CH5-CH3	$\mathrm{H}^{\text {b }}$	6.98	6.05	0.93
1		$\mathrm{H}^{\text {a }}$	7.61	6.83	0.78
		$\mathrm{H}^{\text {b }}$	7.54	5.61	1.93
		$\mathrm{H}^{\text {c }}$	7.47	4.04	3.43
		F	-63.21	-63.33	0.12
1		$\mathrm{H}^{\text {a }}$	7.20	6.65	0.55
		$\mathrm{H}^{\text {b }}$	7.39	5.42	2.15
		$\mathrm{H}^{\text {c }}$	7.28	3.31	3.97
		F	-58.33	-60.08	1.75
2		$\mathrm{H}^{\text {a }}$	3.05	-1.51	4.56
		$\mathrm{H}^{\text {b }}$	2.95	-0.44	3.39
		Hc	2.10	1.46	0.64
2		$\mathrm{H}^{\text {a }}$	1.25	-2.08	3.33
		$\mathrm{H}^{\text {b }}$	4.10	2.15	1.95
		$\mathrm{H}^{\text {c }}$	2.08	-1.97	4.05
2		$\mathrm{H}^{\text {a }}$	2.38	-1.57	3.95
		$\mathrm{H}^{\text {b }}$	7.20	5.75	1.45
		$\mathrm{H}^{\text {c }}$	7.20	5.18	2.02
		$\mathrm{H}^{\text {d }}$	7.20	3.15	4.05
2		$\mathrm{H}^{\text {a }}$	2.30	-2.00	4.30
		$\mathrm{H}^{\text {b }}$	6.98	5.85	1.13
3	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	$\mathrm{H}^{\text {a }}$	5.99	4.17	1.82
3		$\mathrm{H}^{\text {a }}$	2.30	-2.10	4.20
		$\mathrm{H}^{\text {b }}$	6.98	5.88	1.10

well, except for the $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{O}$ interhemispheric bridges. In this partial structure, the four oxygens of the southern and northern hemispheres form a near-square, as shown by the heavy lines connecting each set of four oxygens. The resulting two planes are nearly parallel to one another, so that the eight oxygens approximate a cube.

Similarly, 2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ was crystallized from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}-\mathrm{HCl}_{3}$ to give a crystal structure of $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \cdot 6 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}(R=0.11)$. The host is centrosymmetric, and the guest's long axis roughly corresponds to the long axis of the host. The six $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

Table 3. First-Order Rate Constants and Half-Lives for Decomplexation of $1 \cdot G$ and $2 \cdot G$ in CDCl_{3}

complex	$k\left(\mathrm{~s}^{-1}\right)$			half-life (h) at 318 K
	temp (K)	$\times 10^{4}$	R^{2}	
1. $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	280	2.219	0.999	$0.041^{\text {a }}$
	285	3.379	0.998	
	290	5.319	0.999	
	295	7.835	0.999	
1. $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$	280	0.455	0.999	0.027^{a}
	285	1.070	0.996	
	290	1.605	0.996	
	295	4.354	0.976	
1-1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	313	2.504	0.996	
	318	4.152	0.999	0.46
	323	6.833	0.999	
	328	10.45	0.996	
2.1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	318	0.116	0.990	16.5
2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	318	b		vs ${ }^{\text {b }}$
2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	$373{ }^{\text {c }}$	1.80	0.991	
2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	$403{ }^{\text {c }}$	0.341	0.996	
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	318	0.750	0.988	2.6
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	322	0.797	0.994	
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	327	1.241	0.989	
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	332	1.475	0.996	
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$	318	0.411	0.987	4.7

${ }^{a}$ Extrapolated values. ${ }^{b}$ The rates were too slow at $45{ }^{\circ} \mathrm{C}$ to be measured. ${ }^{c}$ These rate constants were determined in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$.

Table 4. Activation Parameters for Decomplexation of $1 . \mathrm{G}$ in CDCl_{3}

	guest of 1•G			guest of 2•G
term	$\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$
$\Delta H^{*}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	14	23	19	10
$\Delta S^{*}\left(\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-27	4.0	-15	-45
$\Delta G^{*} 298$				
R^{2} for k plots $\left.\mathrm{mol}^{-1}\right)$	22	22	23	24

molecules are located in the area of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}$ appendages. Side and top stereoviews are given in 2a and $\mathbf{2 b}$. In 2a, the $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$ NO_{2} molecules are clustered between and around the feet. In the 2 b view along the long molecular axis, the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ molecules and all of the host except the four cis- $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}$ interhemispheric bridges are omitted and the two sets of four oxygens in each hemisphere are connected by lines to form two squares that are nearly parallel to one another. Table 5 lists the interesting angles and distances in $\mathbf{1}$ and 2 and includes some of the corresponding parameters of complex $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{5}$ for comparison.

Discussion

Crystal Structures. The crystal structure partial end views 1b and $\mathbf{2 b}$ show the host's hemispheres to be untwisted around their polar axes, similar to parent complexes 3 -G, ${ }^{5}$ where guests are organic compounds, but dissimilar to those of 4.G, whose orthodisubstituted phenyl groups in the four bridges acquire a twist of $\sim 21^{\circ}$. An examination of CPK models of $\mathbf{1 - 3}$ containing small guests such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, or $\mathrm{CH}_{3} \mathrm{CN}$ indicates that twisting is possible and even probable since more intramolecular contacts within the host itself and intermolecular contacts between host and guest result.

A dominant feature common to all of the carcerands and hemicarcerands examined thus far that contain interhemispheric bridging groups terminated by oxygens, as in $\operatorname{Ar}(\mathrm{OAO})_{4} \mathrm{Ar}$, is that the unshared electron pairs of the oxygens face inward toward the cavity. This conformation minimizes the energy of the dipolar interactions arising from the three oxygens substituted in 1,2,3positions to one another on each of the eight global aryl groups that line the hosts' cavities. The 1,3 -substituted oxygens are parts of eight-membered rings, whose tightness forces the unshared
electron pairs to face outward, which in turn imposes the inwardturned electron pair conformation on the middle or 2 -substituent oxygen, as is observed. As a consequence, the interhemispheric bridging groups (A) are turned outward, as is visible in stereoviews $\mathbf{1 b}$ and $\mathbf{2 b}$. This self-organizing feature tends to leave the inner space defined by the eight (OAO) ${ }_{4}$ oxygens free of the parts of the A group.

The crystal structures of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ and $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ provide interesting contrasts. In stereoviews $1 \mathbf{a}$ and $\mathbf{1 b}$, the compact $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ guest occupies the torrid and temperate zones of the globe, an area defined mainly by the eight interhemispheric oxygens. Notice the best plane of the $\mathrm{CHCl}_{2}-$ CHCl_{2} guest is tilted somewhat away from being normal to the polar axis. Notice further that all four chlorines of the guest are found close to the $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$ parts of the bridging group, rather than between the bridges. This suggests the existence of attractive forces between the Cl and acetylene carbons. In $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, the long polar axes of the host and the longest axis of the guest are nearly coincident. The methyl group and the para hydrogen of the guest extend into the opposite polar regions of the host. The other aryl hydrogens point toward the bridges, again suggesting the presence of stabilizing attractions between host and guest.

The data of Table 5 indicate the host organizations of 1,2 , and 3 in their complexes to be remarkably similar to one another. The largest differences are in the dihedral angles between the global aryl groups and the ArOC planes, which are 82° for $1, \sim 61^{\circ}$ for 2, and 56° for 3. The Ar-O-C bond angles vary from 113° in 1 to 118° in 2 and $\approx 104^{\circ}$ in 3. These variations probably reflect adaptations to the differing conformational flexibilities of the $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}$, and $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ connecting units. The cavity lengths in the polar (vertical) dimension are as follows (\AA) : $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, 10.46 ; 2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, 9.61; and 3-1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 9.89$. The cavity (horizontal) dimensions calculated from the diagonals of the squares defined by the four oxygens in each of the interhemispheric bridges are as follows (\AA): $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, 5.93 ; 2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}, 6.48$; and $\mathbf{3} \cdot 1,4-$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 6.26$. The longest and thicker dimensions of the three guests measured from CPK models, respectively, are as follows (\AA): $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, 7.7,4.6 ; \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}, 7.7,3.4$; and 1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 8.4,3.4$. Comparisons of these CPK-measured guest dimensions and the cavity sizes indicate there is plenty of room for the guests in the inner phase of the hemicarcerands provided the long axes of the host and guest are coincidental or nearly so, as in $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ and $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. There is not room for the guest in $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ to be located with its best plane 90° to the polar axis, but there is plenty of room if the guest's best plane is tilted so this angle decreases to about 70 or 80° from the polar axis. This tilt is visible in the la side view of the complex.

Notice that in the end view $\mathbf{1 b}$ of the crystal structure of 1. $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$, the four carbon-chlorine bonds of the guest point toward the edges of the rough cube described by the eight oxygens that terminate the four intrahemispheric bridges. This arrangement minimizes the distance between the Cl atoms of the guest and one of the two carbons of the $\mathrm{C} \equiv \mathrm{C}$ bonds of the bridge and possibly reflects a $p-d$-orbital attractive interaction of a low order. Interestingly, the plane of the aryl guest in $\mathbf{2 b}$ is roughly coincident with the best diagonal plane of the rough oxygen cube. The same thing is true in the four crystal structures reported for 3.guest ${ }^{5}$ in which the guest is a substituted benzene ring. This type of host-guest arrangement may reflect low-order attractions of the ArH…O type.

Differences in the Portals of 1, 2, and 3. Computer drawings 6 and 7 (Chart 4) are based on the crystal structure coordinates of the host of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$. The former is a ball and stick model which shows clearly the atomic attachment sequence, whereas the latter drawing closely simulates the CPK model of 1 and resembles a gazebo joined to its reflection in a pool of

Chart 3

Stereoviews

1a, side stereoview of $\mathbf{1} \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$

1b, end partial stereoview of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$
water. Unlike the CPK model of 3, the four portals of this hemicarcerand are wide apart and provide easy access and egress to guests of dimensions approaching those of these entryways. The near linearity of the $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2}$ groups in the four interhemispheric bridges of 1 limits the range of conformational adjustments available to hosts such as 3 to adapt at high temperature to the steric requirements for guests passing into the interior of the host, and at low temperatures, blocking departure by constrictive binding. In 1, the doors are always open, whereas in 3, the doors can be more or less open, depending on the temperature. Accordingly, we expected the range of guests that could be captured and held in the inner phase of $\mathbf{3}$ by temperature

Stereoviews

2a, side stereoview of $\mathbf{2 \cdot} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$

$\mathbf{2 b}$, end partial stereoview of $\mathbf{2 *} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$
manipulation to be larger than that for 1. To the extent that data are available, this expectation was borne out by experiment. Thirty-five complexes of 3 were readily prepared, ${ }^{5.6}$ whereas only five of 1 were obtained. We expect that the number formable from 2 to lie between these two numbers, but our survey of possible guests for 2 was too limited to provide any conclusions.

Chemical Shifts in the NMR Spectra of Hemicarceplexes. The effect of incarceration on the ${ }^{1} \mathrm{H}$ NMR spectra of guests in CDCl_{3} of $1 \cdot \mathrm{G}, 2 \cdot \mathrm{G}$, and $3 \cdot \mathrm{G}$ are compared by the $\Delta \delta$ values (δ of free guest - δ of complexed guest) of Table 2. All of the $\Delta \delta$ values in parts per million of Table 2 have positive signs, which show all of the occupiable interiors of $\mathbf{1}$ and $\mathbf{2}$ are shielded by the eight

Table 5. Interesting Host Angles (deg) and Distances (\AA) in Crystal Structures of $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, 2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, and $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{a}$

Angles (deg)					
complex	twist around polar axis	dihedral between Ar^{a} and $\mathrm{Ar}-\mathrm{O}-\mathrm{C}$ planes			$\mathrm{Ar}-\mathrm{O}-\mathrm{C}^{a}$ bond angles
$\begin{aligned} & \text { 1. } \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2} \\ & \text { 2. } \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \\ & \text { 3.1,4- }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0 \end{aligned}$		$\begin{aligned} & 82.4 \pm 0 \\ & 60.7 \pm 1 \\ & 56 \pm 9 \end{aligned}$		$\begin{aligned} & 113.3 \pm 0.2 \\ & 118 \pm 2 \\ & 104 \pm 8 \end{aligned}$
$\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ Bridges					
distance between best planes					
complex	distances bottom to top of C planes ${ }^{b}$	two central O planes	two central C planes	diagonal $\mathrm{O}-\mathrm{O}$ distance ${ }^{c}$	$\mathrm{OCH}_{2} \mathrm{O}$ bridges diagonal $\mathrm{O}-\mathrm{O}$ distance ${ }^{c}$
1. $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	12.0	4.45 ± 0.01	1.19 ± 0.01	8.72 ± 0.03	9.34 ± 0.04
2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	11.15 ± 0.01	3.9 ± 0.1	1.24 ± 0.2	9.28 ± 0.30	9.38 ± 0.04
3.1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	11.43 ± 0.01	3.94 ± 0.01	0.45 ± 0.01	9.06 ± 0.06	9.34 ± 0.11

${ }^{a}$ Data on $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ is taken from ref $5 .{ }^{b} \mathrm{Ar}$ - H carbons of northern and southern hemispheres. Cavity lengths are these distances minus $1.54 \AA{ }^{c}$ This cavity dimension is this distance minus $2.80 \AA$.

Chart 4

benzene rings that compose much of the global surfaces of the host. As expected from CPK model examination, those guest parts such as CH_{3} and p-Ar-H, whose locations in the polar caps are the most enforced, show the highest $\Delta \delta$ values. Examples are $\mathrm{CH}_{3}{ }^{\mathrm{a}}$ of $\mathrm{CH}_{3}{ }^{\mathrm{a}} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ in $1(\Delta \delta, 3.66)$; $\mathrm{CH}_{3}{ }^{\mathrm{a}}$ of $\mathrm{CH}_{3}{ }^{\mathrm{a}} \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$ in $2(\Delta \delta, 4.56)$; and $\mathrm{CH}_{3}{ }^{\mathrm{a}}$ and $\mathrm{CH}_{3}{ }^{\mathrm{c}}$ of $\mathrm{CH}_{3}{ }^{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CCH}_{3}{ }^{\mathrm{c}}$ ($\Delta \delta, 3.33$ and 4.05 , respectively). Further examples are p - $\mathrm{Ar}-\mathrm{H}$ of $1,4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{c}}$ in $\mathbf{1}(\Delta \delta, 3.43)$; of $1,4-$ $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{c}}$ in $1(\Delta \delta, 3.97)$; and of $1,4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{b}}$ in $2(\Delta \delta$, 4.30).

A particularly interesting example involves a comparison of the $\Delta \delta$ values of the CH_{3} protons in $1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ in $\mathbf{1}, \mathbf{3}$, and 2, all of whose cavity lengths along the polar axes are available from crystal structure data (Tables 2 and 3 of ref 5). The respective $\Delta \delta$ values and cavity lengths in angstroms are as follows: for $\mathbf{1}, 3.96$ and 10.48 ; for $3,4.20$ and 9.89 ; for $2,4.30$

and 9.61. Thus, the shorter the axial dimension of the cavity, the higher the shielding of the CH_{3} protons of the 1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ guest, as was expected.

The lower values of $\Delta \delta$ for protons listed in Table 2 are associated with protons which must lie in the torrid region of the globe. Examples are H^{c} of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}^{c}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ in 1 at $\Delta \delta$ $=1.11 ; \mathrm{H}^{\mathrm{b}}$ of $1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{H}^{\mathrm{b}}$ in $\mathbf{1}$ at $\Delta \delta=0.93$, in $\mathbf{2}$ at $\Delta \delta$ $=1.13$, and in 3 at $\Delta \delta=1.10 ; \mathrm{H}^{\mathrm{a}}$ of $1,2-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{a}}$ in $\mathbf{1}$ at $\Delta \delta$ $=0.78 ; \mathrm{H}^{\mathrm{a}}$ of $1,2-\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{a}}$ in 1 at $\Delta \delta=0.55$; and H^{b} of $1,2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{b}}$ in $\mathbf{2}$ at $\Delta \delta=1.45$. Examples of protons located in the temperate regions of the globe are H^{a} of $\mathrm{CH}^{\mathrm{a}} \mathrm{Cl}_{2} \mathrm{CHCl}_{2}$ in $\mathbf{1}$ at $\Delta \delta=1.69$ and in $\mathbf{3}$ at $\Delta \delta=1.82 ; \mathrm{H}^{\mathrm{b}}$ of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\mathrm{b}} \mathrm{CH}-$ $\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ in $\mathbf{1}$ at $\Delta \delta=1.52$ and $2.14 ; \mathrm{H}^{\mathrm{b}}$ of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\mathrm{b}} \mathrm{O}_{2}$ CCH_{3} in 2 at $\Delta \delta=1.95$; and H^{c} in $1,3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}^{\mathrm{c}}$ in 2 at $\Delta \delta$ $=2.02$.

The ${ }^{19} \mathrm{~F}$ NMR signals for $\mathbf{1} \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathbf{1} \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$
provided upfield shifts of $\Delta \delta=0.12$ and $\Delta \delta=1.75 \mathrm{ppm}$, respectively, suggesting the fluorines are more deeply pressed into the polar cap in $1 \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$, as expected. The behavior of chemical shifts of ${ }^{19} \mathrm{~F}$ in shielding and deshielding environments is less well understood than the ${ }^{1} \mathrm{H}$ shielding-deshielding phenomenon. ${ }^{8}$

The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} of empty and guest-filled hosts $\mathbf{1}$ and $\mathbf{2}$ and two examples of $\mathbf{3}$ are listed in Table 1. As expected from CPK model examination, the eight inward-pointing H^{i} protons of the $\mathrm{OCH}_{2} \mathrm{O}$ groups are generally the most guest-sensitive. In all cases, the presence of guests moved the δ values upfield from 0.45 for $2 . \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ to 0.13 for $3 \cdot \mathrm{CHCl}_{2}$ CHCl_{2}. Not surprisingly, the unsaturated guests produced larger $\Delta \delta$ values than the saturated guests. Of the guests listed, all but $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$ showed only one set of H^{i} signals at $25^{\circ} \mathrm{C}$. The other non-like-ended guests such as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCF}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$ appear to exchange their ends within the host rapidly enough on the ${ }^{1} \mathrm{H}$ NMR time scale to produce averaged signals. The H^{i} signals of 1,2 , and 3 in their complexes were close together, occurring at $\delta=4.18,4.09$, and 4.12 , respectively.

The more outward pointing protons of the $\mathrm{OCH}_{2} \mathrm{O}$ groups $\left(\mathrm{H}^{\circ}\right)$ showed a less ordered sensitivity to the guests, but differed in δ as much as did H^{i} with host and guest change between extremes of 5.66 and 6.12 ppm . The Ar- $\mathrm{H}\left(\mathrm{H}^{\mathrm{a}}\right)$ and methine $\left(\mathrm{H}^{\mathrm{m}}\right)$ protons gave δ values that varied much less than H^{i} and H° with host and guest change, being more distant from the cavity and the hemispheric connecting groups of the three hosts.

Complexation of Carcerand 1 with CDCl_{3}. The complexation of CDCl_{3} with 1 from ambient temperature to $55^{\circ} \mathrm{C}$ proved to be slow on the ${ }^{1} \mathrm{H}$ NMR time scale, but fast on the human time scale. The composition of an equilibrated mixture in CDCl_{3} of 1 and $1 \cdot \mathrm{CHCl}_{3}$ changed from 35% complexed: 65% uncomplexed at $17^{\circ} \mathrm{C}$ to 63% complexed: 37% uncomplexed at $57^{\circ} \mathrm{C}$. Thus, the higher temperature favors complexation, which indicates that ΔS for complexation has a positive entropy and probably makes the dominant contribution to the free energy driving force for complexation at the temperatures studied. This phenomenon was encountered previously in $1,2-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{D}_{4}$ as solvent when hemicarcerand 4 complexed $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ at $100^{\circ} \mathrm{C}(\Delta S=15 \mathrm{cal}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$). Although 4 also exhibited positive entropies in equilibrations with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$, and $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$, their $-T \Delta S$ values were smaller than their ΔH values at $100^{\circ} \mathrm{C} .{ }^{4}$
The high positive entropy for 1 binding CDCl_{3} and 4 binding $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ correlates with the absence in these two guests of conformational equilibria, which could be frozen out during complexation. We interpret these unusual positive entropies as the result of two additive effects. (1) Free guest dissolved in the medium is solvated by several somewhat oriented solvent molecules, all of which must be liberated upon complexation by a single host molecule. Thus, complexation is accompanied by a net decollection of molecules. When guests that possess large flat surfaces dimerize in $\mathrm{CDCl}_{3}, \Delta S$ values as high as $40 \mathrm{cal} \mathrm{mol}^{-1}$ K^{-1} have been observed. ${ }^{9}$ (2) Empty hosts 1 and 4 possess innerphase volumes considerably greater than the small empty spaces between solvent molecules. During complexation, the single large volume of the host interior becomes many small volumes between solvent molecules, thereby providing an entropy of dilution of empty space as one of the driving forces for complexation.

Activation Parameters for Decomplexation of 1.G in CDCl_{3}. Table 3 reports the first-order rate constants for decomplexation for three complexes of $\mathbf{1}$ and four complexes of 2 and, in favorable cases, the rate dependence on temperature. Table 4 lists the derived activation parameters for decomplexation of $1 \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$, 1. $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}, \mathbf{1} \cdot 1,4 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and $\mathbf{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$. At

[^2]$45^{\circ} \mathrm{C}$ in CDCl_{3}, the decomplexation half-lives decreased with structural changes in the following order: $1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}>$ $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}>\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$, and $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}>2 \cdot 1,2-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ $>2 \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}>2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$. The increased length and rigidity of $1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ combine to make it slower to decomplex 1 than either $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ or $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$. To decomplex 1 or 2 , the guests have to rotate around their short axis by $\sim 90^{\circ}$ to exit the host, a process resisted differentially by the inner faces of the polar caps, depending on how far the guest's ends are forced into the polar caps, and by the guest conformational flexibility. Guest $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$ is larger but exits faster than $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ because of its conformational adaptability. The spread in half-lives for decomplexation of 1 was about a power of 10 . The half-lives for guest departing 2 differed by about a factor of >6. Again, the longest and most rigid guest had the longest half-life, followed by the more branched $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$ and less branched $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCCH}_{3}$. In the only case studied in which the same guest exited the interior of 1 and 2, the half-life of $2 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}>1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ by a factor of ~ 36. This result fulfills expectations based on the fact that the $\left(\mathrm{OCH}_{2^{-}}\right.$ $\mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{O}$)-lined portals of 1 contain fewer space-occupying $\mathrm{C}-\mathrm{H}$ bonds than the $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right)$-lined portals of 2.

Table 4 lists the activation parameters for decomplexations of 1. $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}, 1 \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}, 1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and 2. $\left(\mathrm{CH}_{3}\right)_{2^{-}}$ NCOCH_{3} in CDCl_{3}. While the $\Delta G^{*}{ }_{298}$ values of decomplexation for the three complexes of 1 were comparable at $22-23 \mathrm{kcal} \mathrm{mol}^{-1}$, this near equality in the activation free energies is an artifact of additions of substantial $-T \Delta S^{\#}$ values of $8-5 \mathrm{kcal} \mathrm{mol}^{-1}$ to dominating ΔH^{*} values of 14 and $19 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, for 1. $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ and $1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and the small subtraction of $1 \mathrm{kcal} \mathrm{mol}^{-1}$ for $-T \Delta S^{*}$ from the large ΔH^{*} value of $23 \mathrm{kcal} \mathrm{mol}^{-1}$ for $1 \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$.

We interpret these large fluctuations in ΔH^{*} and ΔS^{*} for the decomplexation of the three complexes of 1 as follows. The activation free enthalpies ($\mathrm{kcal} \mathrm{mol}^{-1}$) decrease as follows: $1 \cdot \mathrm{CF}_{3}{ }^{-}$ $\mathrm{OC}_{6} \mathrm{H}_{5}(23), 1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (19), and $1 \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ (14). This order correlates with the number and the closeness of the contacts between host and guest in the starting complexes derived from the CPK molecular model examination. Most of these stabilizing contacts must be destroyed in going to the transition states, so the transition-state enthalpies should be the highest in energy when these contacts are the more stabilizing, as is observed. The high $-T \Delta S^{*}$ values ($\mathrm{kcal} \mathrm{mol}^{-1}$) for $\mathbf{1} \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}(8)$ and $1 \cdot 1,4-$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (5) perhaps reflect the greater structural reorganization that the complex must undergoin its transition compared to its ground state, as compared to that for $1 \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}(-1)$. Both $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ and 1,4-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ are rigidly linear molecules and to escape their prison must deform the portal, whereas $\mathrm{CF}_{3^{-}}$ $\mathrm{OC}_{6} \mathrm{H}_{4}$ is crooked, and its shape is more adaptable to the steric requirements for occupying the portal.

Although the error in calculating ΔH^{*} and ΔS^{*} for decomplexations of $2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$ were larger (${ }^{1} \mathrm{H}$ NMR signal separation problems) than those for the complexes of 1 , there is no doubt that ΔS^{*} is large and negative, and probably the $T \Delta S^{*}$ value for decomplexation of $13.4 \mathrm{kcal} \mathrm{mol}^{-1}$ at 298 K is greater than the ΔH^{*} value of $10 \mathrm{kcal} \mathrm{mol}^{-1}$. This high entropic cost to decomplexation is in harmony with the relatively free movement of the amide guest in $\mathbf{2}$ compared to its very rigid transition state for guest exiting 2 (CPK model examination).

Reactions of Host without Loss of Guest. An interesting question to be settled is what reactions can a carceplex undergo without losing its guests? When submitted to the action of H_{2} PdC in benzene solution, $1 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ gave ($\sim 80 \%$ yields), respectively, $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $3 \cdot \mathrm{CHCl}_{2}$ CHCl_{2}, the former of which had been prepared by heating 3 in p-xylene at $138^{\circ} \mathrm{C}$ for 4 days. The latter complex failed to form when a solution of 3 was heated at reflux for 3 days in CHCl_{2} -
CHCl_{2} as solvent. ${ }^{5}$ The spectral properties of $3 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ prepared by the two methods were identical, whereas the FAB MS and ${ }^{1} \mathrm{H}$ NMR spectra and elemental analyses of $3 . \mathrm{CHCl}_{2}{ }^{-}$ CHCl_{2} were what were expected.

These results indicate that reactions can be carried out on the host of carceplexes without guest loss. They also illustrate how a carceplex resistant to direct formation from host and guest can be prepared by host modification of a carceplex easily formed from its components. Another study demonstrated that five new hemicarceplexes of 3 were preparable by either oxidation of incarcerated hydroquinones to incarcerated quinones or reduction of incarcerated $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ to incarcerated $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHOH} .{ }^{6}$ When added to the direct syntheses of 29 carceplexes of 3,5 these six indirect syntheses provide a total of 35 characterized carceplexes with $\mathbf{3}$ as host. Carcerand $\mathbf{3}$ is thus far the most broadly useful container compound we have invented and studied.

Experimental Section

General Procedures. All chemicals were reagent grade (Aldrich) and were used as obtained unless otherwise noted. Dimethylacetamide (DMA) was dried over $4-\AA$ sieves (activated by heating to $320^{\circ} \mathrm{C}$ for 24 h). A Bruker AM 500 spectrometer was used to record ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra. Spectra taken in CDCl_{3} were referenced to residual CHCl_{3} at 7.24 ppm . Mass spectra (FAB) were performed on a ZAB SE instrument, using NOBA (3-nitrobenzyl alcohol) as a matrix. Gravity chromatography was performed using E. Merck grade silica gel 60 ($70-230$ mesh). Thinlayer chromatography was performed on glass-backed plates (silica gel 60 , F254, $0.25-\mathrm{mm}, 1-\mathrm{mm}$, and $2-\mathrm{mm}$ thicknesses).

34,47-(Epoxy (2])urtynoxy)-20,24:57,61-dimethano-2,52:17,29-dimetheno$3,51,16,30$ (methynoxy [2] butynoxymethyno) - $1 \mathrm{H}, 18 \mathrm{H}, 26 \mathrm{H}, 28 \mathrm{H}, 53 \mathrm{H},-$ $55 H$-bis $[1,3]$ benzodioxocino $\left[9,8-d .9^{\prime}, 8^{\prime}-d^{\prime}\right]$ bis $[1,3]$ benzodioxocino $\left[9,10^{\prime}\right.$: 17,$\left.18 ; 10^{\prime}, 9^{\prime}: 25,26\right] 1,3,6,11,14,16,19,24$]octaoxacyclohexacosino $[4,5-j$;. 13,12- f$] \mathrm{bis}[1,3]$ enzodioxocin, $9,10,40,41$-Tetrahydro-8, 11,39,42-tetrahydro$\mathbf{1 , 1 8 , 2 6 , 2 8 , 5 3 , 5 5 , 6 3 , 8 0}$-octakis (2-phenylethyl)-(1). Method A. Use of 1,4-Dichloro-2-butyne. To a 1-L round-bottom flask was added DMA (ca. 500 mL), and the solvent was degassed in vacuo for 30 min . Tetraphenol cavitand $5^{4}\left(1.00 \mathrm{~g}, 9.83 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11 \mathrm{~g}, 3.38$ $\left.\times 10^{-2} \mathrm{~mol}\right)$ were added, and the resulting suspension was heated to 60 ${ }^{\circ} \mathrm{C}$ under argon with stirring. To the mixture was added 1,4 -dichloro-2-butyne ($0.6 \mathrm{~mL}, 6.13 \times 10^{-3} \mathrm{~mol}$) in one portion by syringe. The mixture was stirred for 4 days under argon, during which time the color was observed to change from an ivory-colored suspension to a tarry brownblack suspension. The solvent was removed in vacuo, the residue was redissolved in CHCl_{3}, and the resulting suspension was filtered through ca. 25 g of Celite to remove any particulate residue. The crude material was reduced in volume to $c a .20 \mathrm{~mL}$ and chromatographed (silica/5\% EtOAc in CHCl_{3}). The band with $R_{f}=0.91$ was collected (this material still contained some of the brown polymeric by-product). The partially purified material was then chromatographed twice by preparative TLC (silica $/ \mathrm{CHCl}_{3}$). The band at $R_{f}=0.59$ was isolated, extracted with 20% EtOAc in CHCl_{3}, and filtered through Celite, and the solvent was removed in vacuo to give $\mathbf{1}\left(41.9 \mathrm{mg}, 1.88 \times 10^{-5} \mathrm{~mol}, 4 \%\right)$ as a white solid (Note: compound 1 is isolated from the chromatogram as an equilibrium mixture of the solution-unstable CHCl_{3} complex and empty material; the ratio of these is temperature and solvent dependent). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ MHz) (Note: data is given for the host at $21^{\circ} \mathrm{C}$, with 61% empty host and $39 \% \mathrm{CDCl}_{3}$ complex present) $\delta 2.42-2.47\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right.$), 2.61-2.66 ($\mathrm{m}, 16 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $4.16\left(\mathrm{~d}, 8 \mathrm{H}, J=7.31 \mathrm{~Hz}\right.$, inner $\mathrm{CH}_{2^{-}}$ CDCl_{3} complex), 4.50 (d, $8 \mathrm{H}, J=7.24 \mathrm{~Hz}$, inner $\mathrm{OCH}_{2} \mathrm{O}$-empty host), $4.76\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}-\mathrm{CDCl}_{3}\right.$ complex), $4.85\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.80(\mathrm{t}$, $8 \mathrm{H}, J=7.90 \mathrm{~Hz}, \mathrm{ArCH}), 5.91\left(\mathrm{~d}, 8 \mathrm{H}, J=7.23 \mathrm{~Hz}\right.$, outer $\mathrm{OCH}_{2} \mathrm{O}$-empty host), $6.12\left(\mathrm{~d}, 8 \mathrm{H}, J=7.18 \mathrm{~Hz}\right.$, outer $\mathrm{OCH}_{2} \mathrm{O}-\mathrm{CDCl}_{3}$ complex), 6.77 (s, 8 H , bowl ArH-empty host), 6.79 ($\mathrm{s}, 8 \mathrm{H}$, bowl ArH- CDCl_{3} complex), $7.10-7.13$ (m, 16H, foot ArH), $7.20-7.24$ ($\mathrm{m}, 24 \mathrm{H}$, foot ArH); MS (Xenon FAB, NOBA matrix) m / e (rel int) $2234\left(\mathrm{M}^{+}, \mathrm{C}_{144} \mathrm{H}_{120} \mathrm{O}_{24}, 100\right.$), 2353 $\left(\mathrm{M}^{+}, \mathrm{C}_{144} \mathrm{H}_{120} \mathrm{O}_{24} \cdot \mathrm{CHCl}_{3}, 80\right)$. Purified partial CHCl_{3} complex of $1(20$ $\left.\mathrm{mg}, 8.95 \times 10^{-6} \mathrm{~mol}\right)$ was dissolved in $\mathrm{CCl}_{4}(10 \mathrm{~mL})$. The solution was heated to reflux for 1 day in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet and then allowed to cool to 25 ${ }^{\circ} \mathrm{C}$. Empty 1 was precipitated from solution by addition to ca. 100 mL of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $100^{\circ} \mathrm{C}$ for 10 h , to yield $1\left(17 \mathrm{mg}, 7.61 \times 10^{-6}\right.$ mol, 85%) as a white solid. Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{120} \mathrm{O}_{24}: \mathrm{C}, 77.40 ; \mathrm{H}$, 5.41. Found: C, 77.01; H, 5.49.

Method B. Use of 2-Butyne-1,4-ditosylate. The reaction was carried out in a similar fashion to that described above, using $5(1.25 \mathrm{~g}, 1.23 \times$ $10^{-3} \mathrm{~mol}$), 2-butyne-1,4-di-p-tolunesulfonate ($1.45 \mathrm{~g}, 3.69 \times 10^{-3} \mathrm{~mol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(11 \mathrm{~g}, 3.38 \times 10^{-2} \mathrm{~mol}\right)$ in 500 mL of degassed DMA, and was conducted at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 days, and 1 was isolated in the same manner as described above except that a third preparative TLC chromatograph was necessary to yield the product $\left(8.3 \mathrm{mg}, 3.72 \times 10^{-6} \mathrm{~mol}, 0.7 \%\right)$ as a white solid, with physical properties identical to the authentic material.

Method C. Use of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ and 2-Butyne-1,4-ditosylate. The reaction was carried out under high-dilution conditions by adding a solution of $5\left(1.00 \mathrm{~g}, 9.83 \times 10^{-4} \mathrm{~mol}\right)$ and 2-butyne-1,4-ditoluenesulfonate (1.25 $\mathrm{g}, 3.17 \times 10^{-3} \mathrm{~mol}$) in 40 mL of degassed DMA to a suspension of Rb_{2} $\mathrm{CO}_{3}\left(6 \mathrm{~g}, 2.60 \times 10^{-2} \mathrm{~mol}\right)$ in 460 mL of degassed DMA. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 4 days, at which time an additional portion of 2-butyne-1,4-ditoluenesulfonate ($1.25 \mathrm{~g}, 3.17 \times 10^{-3} \mathrm{~mol}$) was added. Stirring was continued for an additional 4 days before performing the workup as described previously. The crude material was purified by filtration through a silica plug (using $5 \% \mathrm{EtOAc}$ in CHCl_{3} as eluent), followed by preparative TLC (with CHCl_{3} as eluent). The product was isolated as described previously to yield $1\left(71.0 \mathrm{mg}, 10^{-6} \mathrm{~mol}, 6.5 \%\right)$ as a white solid, with physical properties identical to an authentic sample of pure host.

1. CHCl_{3}. Purified partial CHCl_{3} complex of $1\left(30 \mathrm{mg}, 1.34 \times 10^{-5}\right.$ mol) was dissolved in CHCl_{3} (10 mL), and the mixture was heated to reflux in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet for 10 min . Complex $1 \cdot \mathrm{CHCl}_{3}$ was immediately precipitated from the solution by addition to $c a .100 \mathrm{~mL}$ of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $100^{\circ} \mathrm{C}$ for 10 h , to give the complex ($17 \mathrm{mg}, 7.61 \times 10^{-6} \mathrm{~mol}, 85 \%$) as a white solid. Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{120} \mathrm{O}_{24}: \mathrm{C}, 73.99 ; \mathrm{H}, 5.18$. Found: C, 74.16; H, 5.27.
2. $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$. Purified partial CHCl_{3} complex of $\mathbf{1}(\mathbf{5 0} \mathrm{mg}, 2.24$ $\times 10^{-5} \mathrm{~mol}$) was dissolved in $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}(15 \mathrm{~mL})$. The mixture was heated to reflux for 6 h in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet and allowed to cool to $25^{\circ} \mathrm{C}$. The complex was precipitated from solution by addition to ca. 100 mL of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $110^{\circ} \mathrm{C}$ for 18 h , to yield $1 . \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ (47 mg , $1.96 \times 10^{-5} \mathrm{~mol}, 87 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37-2.49\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 2.60-2.68\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 4.30(\mathrm{~s}$, 2 H , guest CH), $4.34\left(\mathrm{~d}, 8 \mathrm{H}, J=7.32 \mathrm{~Hz}\right.$, inner CH_{2}), $4.79(\mathrm{~s}, 16 \mathrm{H}$, bridge CH_{2}), $4.80(\mathrm{t}, 8 \mathrm{H}, J=8.01 \mathrm{~Hz}$, foot CH$), 6.06(\mathrm{~d}, 8 \mathrm{H}, J=7.31$ Hz , outer $\left.\mathrm{CH}_{2}\right), 6.79(\mathrm{~s}, 8 \mathrm{H}$, bowl ArH), $7.09-7.13(\mathrm{~m}, 16 \mathrm{H}$, foot ArH), 7.17-7.24 (m, 24H, foot ArH); MS (Xenon FAB, NOBA matrix) m/e (rel int) $2402\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{120} \mathrm{O}_{24} \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$: C, $73.00 ; \mathrm{H}, 5.12 ; \mathrm{Cl}, 5.90$. Found: C, $73.08 ; \mathrm{H}, 5.12 ; \mathrm{Cl}, 5.78$.
3. $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$. Purified partial CHCl_{3} complex of $1\left(18 \mathrm{mg}, 8.23 \times 10^{-6}\right.$ mol) was dissolved in $\mathrm{CCl}_{4}(2 \mathrm{~mL}), \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}(4 \mathrm{~mL})$ was added, and the mixture was heated to reflux in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet. Within 5 min , a white precipitate had formed from the previously clear solution. The reaction was refluxed for 6 h and then allowed to cool to $25^{\circ} \mathrm{C}$. The complex was immediately precipitated from solution by addition to $c a .100 \mathrm{~mL}$ of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $110^{\circ} \mathrm{C}$ for 18 h , to yield $2 \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}(14 \mathrm{mg}, 5.80$ $\times 10^{-6} \mathrm{~mol}, 70 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.38-2.57 (m, 16H, foot CH_{2}), 2.59-2.71 (m, 16 H , foot CH_{2}), $4.04(\mathrm{t}$, $1 \mathrm{H}, J=7.63 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}$ of guest), $4.15\left(\mathrm{~d}, 8 \mathrm{H}, J=7.28 \mathrm{~Hz}\right.$, inner $\left.\mathrm{CH}_{2}\right)$, $4.65\left(\mathrm{~s}, 16 \mathrm{H}\right.$, bridge $\left.\mathrm{CH}_{2}\right), 4.81(\mathrm{t}, 8 \mathrm{H}, J=7.78 \mathrm{~Hz}$, foot CH$), 5.61(\mathrm{t}$, $2 \mathrm{H}, J=7.61 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}$ of guest), $5.85\left(\mathrm{~d}, 8 \mathrm{H}, J=7.19 \mathrm{~Hz}\right.$, outer CH_{2}), $6.83\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.44 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right.$ of guest), $6.91(\mathrm{~s}, 8 \mathrm{H}$, bowl ArH), $7.07-7.16$ (m, 16H, foot ArH), 7.16-7.24 (m, 24H, foot ArH); ${ }^{19}$ F NMR (471.598 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}$ ref) $\delta_{\mathrm{F}}-63.33$. Anal. Caled for $\mathrm{C}_{144^{-}}$ $\mathrm{H}_{120} \mathrm{O}_{4} \cdot \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CCl}_{4}: \mathrm{C}, 72.03 ; \mathrm{H}, 4.97$. Found: $\mathrm{C}, 72.36 ; \mathrm{H}, 5.03$.
4. $\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H} 5$. Purified partial CHCl_{3} complex of $1(20 \mathrm{mg}, 8.95 \times$ $10^{-6} \mathrm{~mol}$) was dissolved in $\mathrm{CCl}_{4}(2 \mathrm{~mL}), \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}(4 \mathrm{~mL})$ was added, and the mixture was heated to reflux in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet. Within 5 min a white precipitate had formed from the previously clear solution. The reaction was refluxed for 6 h and then allowed to cool to room temperature. The complex was immediately precipitated from solution by addition to ca. 100 mL of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $110^{\circ} \mathrm{C}$ for 18 h , to yield $1 \cdot \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}$ ($15 \mathrm{mg}, 6.09 \times 10^{-6} \mathrm{~mol}, 69 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.38-2.56\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 2.59-2.70\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right)$,
$3.31\left(\mathrm{t}, 1 \mathrm{H}, J=7.75 \mathrm{~Hz}, \mathrm{H}^{\mathrm{a}}\right.$ of guest), $4.23(\mathrm{~d}, 8 \mathrm{H}, J=7.25 \mathrm{~Hz}$, inner $\left.\mathrm{CH}_{2}\right), 4.64\left(\mathrm{~s}, 16 \mathrm{H}\right.$, bridge $\left.\mathrm{CH}_{2}\right), 4.81(\mathrm{t}, 8 \mathrm{H}, J=7.95 \mathrm{~Hz}$, foot CH$)$ $5.24\left(\mathrm{t}, 2 \mathrm{H}, J=7.79 \mathrm{~Hz}, \mathrm{H}^{\mathrm{b}}\right.$ of guest), $5.85(\mathrm{~d}, 8 \mathrm{H}, J=7.23 \mathrm{~Hz}$, outer $\left.\mathrm{CH}_{2}\right), 6.65\left(\mathrm{~d}, 2 \mathrm{H}, J=7.97 \mathrm{~Hz}, \mathrm{H}^{\mathrm{c}}\right.$ of guest), 7.01 (s, 8 H , bowl ArH), 7.07-7.16 (m, 16H, foot ArH), 7.16-7.24 (m, 24 H , foot ArH); ${ }^{19} \mathrm{FNMR}$ ($470.598 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}$ ref) $\delta_{\mathrm{F}}-60.08$. Anal. Caled for $\mathrm{C}_{144}-$ $\mathrm{H}_{120} \mathrm{O}_{24}: \mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}: \mathrm{C}, 75.68 ; \mathrm{H}, 5.26$. Found: $\mathrm{C}, 75.44 ; \mathrm{H}, 5.28$.

1-p-Xylene. Purified partial CHCl_{3} complex of $1\left(30 \mathrm{mg}, 1.34 \times 10^{-5}\right.$ mol) was suspended in p-xylene (10 mL). The mixture was heated to reflux for 6 h in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet and allowed to cool to $25^{\circ} \mathrm{C}$. The complex was precipitated from solution by addition to $c a .100 \mathrm{~mL}$ of hexane, and the product was collected on a fine-sintered glass funnel and dried at 10^{-5} Torr, $110^{\circ} \mathrm{C}$ for 18 h , to yield 2 -p-xylene ($27 \mathrm{mg}, 1.15 \times 10^{-5} \mathrm{~mol}, 86 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.66(\mathrm{~s}, 6 \mathrm{H}$, guest CH_{3}), 2.45-2.49 (m, 16H, foot CH_{2}), 2.63-2.68 (m, 16 H , foot CH_{2}), $4.18\left(\mathrm{~d}, 8 \mathrm{H}, J=7.35 \mathrm{~Hz}\right.$, inner $\left.\mathrm{CH}_{2}\right), 4.55\left(\mathrm{~s}, 16 \mathrm{H}\right.$, bridge $\left.\mathrm{CH}_{2}\right), 4.83$ (t, $8 \mathrm{H}, J=8.00 \mathrm{~Hz}$, foot CH), $5.90\left(\mathrm{~d}, 8 \mathrm{H}, J=7.32 \mathrm{~Hz}\right.$, outer CH_{2}), 6.05 ($\mathrm{s}, 4 \mathrm{H}$, guest ArH), 6.87 (s, 8 H , bowl ArH), $7.11-7.15$ (m, 16H, foot ArH), 7.18-7.23 (m, 24H, foot ArH); MS (Xenon FAB, NOBA matrix) m / e (rel int) $2340(\mathrm{M}-1,40)$. Anal. Calcd for $\mathrm{C}_{144^{-}}$ $\mathrm{H}_{120} \mathrm{O}_{24} \cdot p-(1,4)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$: C, 78.00; $\mathrm{H}, 5.60$. Found: $\mathrm{C}, 77.86 ; \mathrm{H}, 5.78$.
1.(S)-(+)-1-Bromo-2-methylbutane. Purified partial CHCl_{3} complex of $1\left(20 \mathrm{mg}, 8.95 \times 10^{-6} \mathrm{~mol}\right)$ was dissolved in $\mathrm{CCl}_{4}(5 \mathrm{~mL}),(S)-(+)$ -1-bromo-2-methylbutane (1 drop) was added, and the mixture was heated to reflux in a $14 / 20$ heavy-walled $20-\mathrm{mL}$ reaction tube fitted with a condenser and inert gas inlet. The reaction was refluxed for 1 day and then allowed to cool to $25^{\circ} \mathrm{C}$. The complex was precipitated from solution by addition to $c a .100 \mathrm{~mL}$ of hexane, and the product was collected on a fine-sintered glass funnel and dried at $10^{-5} \mathrm{Torr}, 110^{\circ} \mathrm{C}$ for 18 h , to give $1 \cdot(\mathrm{~S})-(+)$-1-bromo-2-methylbutane ($15 \mathrm{mg}, 6.29 \times 10^{-6} \mathrm{~mol}, 70 \%$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.77(\mathrm{t}, 3 \mathrm{H}, J=7.4$ Hz , guest $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.70\left(\mathrm{~m}, 1 \mathrm{H}\right.$, diastereotopic guest $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-$ CH_{3}), $-0.24\left(\mathrm{~m}, 1 \mathrm{H}\right.$ diastereotopic guest $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.01(\mathrm{~d}$, $3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, guest $\left.\mathrm{CHCH}_{3}\right), 0.14\left(\mathrm{~m}, 1 \mathrm{H}\right.$, guest $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)$, $1.42(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}$, diastereotopic guest BrCH 2 CH$), 1.89(\mathrm{t}, 1 \mathrm{H}$, $J=10.0 \mathrm{~Hz}$, diastereotopic guest BrCH 2 CH), $2.36-2.54(\mathrm{~m}, 16 \mathrm{H}$, foot CH_{2}), $2.57-2.71\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 4.27(\mathrm{~d}, 8 \mathrm{H}, J=7.2 \mathrm{~Hz}$, inner $\left.\mathrm{CH}_{2}\right), 4.81\left(\mathrm{~s}, 16 \mathrm{H}\right.$, bridge $\left.\mathrm{CH}_{2}\right), 4.84(\mathrm{t}, 8 \mathrm{H}, J=7.9 \mathrm{~Hz}$, foot CH), 6.07 (d, $8 \mathrm{H}, J=7.2 \mathrm{~Hz}$, outer CH_{2}), $6.81(\mathrm{~s}, 8 \mathrm{H}$, bowl ArH), $7.06-7.17$ (m, 16 H , foot ArH), 7.17-7.24 (m, 24H, foot ArH), MS (Xenon FAB, NOBA matrix) m / e (rel int) 2385 ($\mathrm{M}-1,56$). Anal. Calcd for C_{144} $\mathrm{H}_{120} \mathrm{O}_{24} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}: \mathrm{C}, 75.02 ; \mathrm{H}, 5.54 ; \mathrm{Br}, 3.35$. Found: C, 75.10; H, 5.34; Br, 3.27.
3.p-Xylene. A solution of $1 \cdot p$-xylene ($5.3 \mathrm{mg}, 2.26 \times 10^{-6} \mathrm{~mol}$) in benzene (50 mL) was combined with $5 \% \mathrm{Pd} / \mathrm{C}(21.4 \mathrm{mg}$) in a $250-\mathrm{mL}$ pressure bottle. The mixture was attached to a Parr shaker hydrogenation apparatus, evacuated, back-filled three times with H_{2}, pressurized to 10 psi, and shaken for 4 h . The reaction vessel was then evacuated, the solution was filtered through Celite, and the solvent was removed in vacuo. The crude complex was chromatographed by preparative TLC (silica $/ \mathrm{CHCl}_{3}$), and the band running at $R_{f}=0.58$ was isolated and extracted with $20 \% \mathrm{EtOAc}$ in CHCl_{3}. The suspension was filtered, the solvent was removed, and the product was dried in vacuo to yield $3 . p$ xylene ($4.4 \mathrm{mg}, 1.85 \times 10^{-6} \mathrm{~mol}, 82 \%$) as a white solid (Note: only ${ }^{1} \mathrm{H}$ NMR data are given here, as this complex was prepared by a different route and fully characterized elsewhere; the compound described here is identical in all respects to the authentic sample) ${ }^{5}:{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta-2.10\left(\mathrm{~s}, 6 \mathrm{H}\right.$, guest $\left.\mathrm{CH}_{3}\right), 1.87\left(\mathrm{~s}, 16 \mathrm{H}\right.$ bridge $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $2.45-2.53\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 2.66-2.71\left(\mathrm{~m}, 16 \mathrm{H}\right.$, foot $\left.\mathrm{CH}_{2}\right), 3.85(\mathrm{~s}$, 16 H , bridge $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $4.12\left(\mathrm{~d}, 8 \mathrm{H}, J=6.97 \mathrm{~Hz}\right.$, inner $\left.\mathrm{CH}_{2}\right), 4.85(\mathrm{t}$, $8 \mathrm{H}, J=7.92 \mathrm{~Hz}$, foot CH$), 5.66\left(\mathrm{~d}, 8 \mathrm{H}, J=7.06 \mathrm{~Hz}\right.$, outer $\left.\mathrm{CH}_{2}\right), 5.88$ (s, 4H, guest ArH), 6.87 (s, 8H, bowl ArH), 7.12-7.18 (m, 16H, foot ArH), 7.18-7.24 (m, 24H, foot ArH).
$3 . \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$. A solution of $3 . \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}\left(4.8 \mathrm{mg}, 2.00 \times 10^{-6}\right.$ $\mathrm{mol})$ in benzene (50 mL) was combined with $5 \% \mathrm{Pd} / \mathrm{C}(23.0 \mathrm{mg})$ in a $250-\mathrm{mL}$ pressure bottle. The mixture was attached to a Parr shaker hydrogenation apparatus, evacuated, and back-filled three times with H_{2}, pressurized to 10 psi , and shaken for 4 h . The reaction vessel was evacuated, the solution was filtered through Celite, and the solvent was removed in vacuo. The crude complex was chromatographed by preparative TLC (silica $/ \mathrm{CHCl}_{3}$), and the band running at $R_{f}=0.62$ was isolated and extracted with $20 \% \mathrm{EtOAc}$ in CHCl_{3}. The suspension was filtered, the solvent was removed, and the product was dried in vacuo to yield $3 . \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}\left(4.0 \mathrm{mg}, 1.65 \times 10^{-6} \mathrm{~mol}, 83 \%\right)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.95\left(\mathrm{~s}, 16 \mathrm{H}\right.$, bridge $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.14-$
2.21 ($\mathrm{m}, 16 \mathrm{H}$, foot CH_{2}), 2.62-2.69 (m, 16H, foot CH_{2}), $3.92(\mathrm{~s}, 16 \mathrm{H}$, bridge $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $4.17(\mathrm{~s}, 2 \mathrm{H}$, guest CH$), 4.37(\mathrm{~d}, 8 \mathrm{H}, J=6.99 \mathrm{~Hz}$, inner CH_{2}), $4.80(\mathrm{t}, 8 \mathrm{H}, J=7.92 \mathrm{~Hz}$, foot CH), $5.79(\mathrm{~d}, 8 \mathrm{H}, J=6.99$ Hz , outer CH_{2}), 6.80 (s, 8H, bowl ArH), $7.12-7.17$ (m, 16 H , foot ArH), 7.18-7.23 (m, 24H, foot ArH); MS (Xenon FAB, NOBA matrix) m / e (rel int) $2417\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{136} \mathrm{O}_{24} \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$: $\mathrm{C}, 72.51 ; \mathrm{H}, 5.75 ; \mathrm{Cl}, 5.86$. Found: $\mathrm{C}, 72.81 ; \mathrm{H}, 5.74 ; \mathrm{Cl}, 5.46$.

34,37-(Epoxy[2]butenoxy)-20,24:57,61-dimethano-2,52:17,29-dimetheno-$3,51,16,30$-(methynoxy[2] outenoxy methyno)-1H,18H,26H,53H,55H-bis[1,3]penzodioxocino $\left[9,8-d, 9^{\prime}, 8^{\prime}-d\right]$ bis 1,3 benzodioxocino $\left[9,10: 17,18 ; 10^{\prime}, 9^{\prime \prime}\right.$: $25,26][1,3,6,11,14,16,19,24]$ octaoxacy $\operatorname{lohexacosino[4,5-j:13,12-}$ J]bis[1,3]benzodioxocin, 8,11,39,42-Tetrahydro-1,18,26,28,53,55,63,80octakis (2-phenylethyl)-, 2. 2.EtOAc and 2. CHCl_{3} Mixture. Toa $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.5 g) suspension of DMA (300 mL) stirred at $60^{\circ} \mathrm{C}$ under argon was added over 8 h a DMA solution (60 mL) containing $5(0.50 \mathrm{~g}, 0.50 \mathrm{mmol}$) and cis-1,4-dichloro-2-butene ($0.32 \mathrm{~mL}, 3.0 \mathrm{mmol}$, or 1.5 equiv). After stirring for 3 days, the mixture was evaporated in vacuo to give a solid, which was chromatographed on silica gel with $20: 1 \mathrm{CHCl}_{3}$ to EtOAc as the mobile phase to provide $139 \mathrm{mg}(25 \%)$ of predominantly 1 -EtOAc mixed with $1 \cdot \mathrm{CHCl}_{3}$. This mixture was converted to pure and fully characterized complexes as follows.

Complex 2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}$. An EtOAc solution (10 mL) containing mainly 2-EtOAc (42 mg) was refluxed for 1 day. Hexane was added to precipitate the new complex, which was collected on a fine-fritted funnel and dried at $100^{\circ} \mathrm{C}\left(5 \times 10^{-5}\right.$ Torr, 18 h$)$ to give 37 mg of the EtOAc complex: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.23(\mathrm{~m}, 24 \mathrm{H}), 7.16(\mathrm{~m}, 16 \mathrm{H})$, 6.83 (s, 8 H), 6.03 (bs, 8 H), 5.83 (d, $J=7.2 \mathrm{~Hz}, 8 \mathrm{H}$), 4.83 (bs, 8 H$), 4.56$ (bs, 16 H), 4.19 (d, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 4.12 (d, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 2.68 (m, $16 \mathrm{H}), 2.49(\mathrm{~m}, 16 \mathrm{H}), 2.15(\mathrm{G}, \mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}),-1.97(\mathrm{G}, \mathrm{s}, 3 \mathrm{H}),-2.08$ ($\mathrm{G}, \mathrm{J}=7.9 \mathrm{~Hz}, 3 \mathrm{H}$); see Table 1 for assignments; MS (Xenon FAB, NOBA matrix) isotope clusters at $m / e 2331(\mathrm{M}+2,85), 2243(\mathrm{M}-\mathrm{G}$, 100). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{128} \mathrm{O}_{24} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CCH}_{3}: \mathrm{C}, 76.27 ; \mathrm{H}$, 5.88. Found: C, 75.89; H, 5.96.

Complex 2- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$. A DMA solution (5 mL) containing 20 mg of mostly 2-EtOAc complex was heated to $100^{\circ} \mathrm{C}$ for 3 days. Hexane was added to precipitate the new complex, which was collected on a fine-fritted funnel and dried at $100^{\circ} \mathrm{C}\left(5 \times 10^{-5}\right.$ Torr, 18 h$)$ to give 15 mg of $2 \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.24(\mathrm{~m}$, $24 \mathrm{H}), 7.16(\mathrm{~m}, 16 \mathrm{H}), 6.86(\mathrm{~s}, 8 \mathrm{H}), 6.02(\mathrm{t}, J=3.5 \mathrm{~Hz}, 8 \mathrm{H}), 5.81(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 4.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 4.55(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 16 \mathrm{H})$, $4.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 2.67(\mathrm{~m}, 16 \mathrm{H}), 2.48(\mathrm{~m}, 16 \mathrm{H}), 1.46(\mathrm{G}, \mathrm{s}, 3 \mathrm{H})$, -0.44 (G, s, 3H), -1.51 (D, s, 3 H); see Table 1 for assignments; MS (Xenon FAB, NOBA matrix) isotope cluster at $m / e 2332(\mathrm{M}+2,100)$. Anal. Caled for $\mathrm{C}_{144} \mathrm{H}_{128} \mathrm{O}_{24} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}: \mathrm{C}, 76.30 ; \mathrm{H}, 5.93 ; \mathrm{N}$, 0.60 . Found: $\mathrm{C}, 76.14 ; \mathrm{H}, 5.83 ; \mathrm{N}, 0.55$.

Complex 2-1,4 ($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. A p-xylene solution (5 mL) containing 22 mg of mostly EtOAc complex was refluxed for 1 day. Hexane was added to precipitate the new complex, which was collected on a finefritted funnel and dried at $100^{\circ} \mathrm{C}\left(5 \times 10^{-5}\right.$ Torr, 18 h$)$ to give 20 mg of $2 \cdot 1,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.18(\mathrm{~m}, 24 \mathrm{H})$, $7.08(\mathrm{~m}, 16 \mathrm{H}), 6.91(\mathrm{~s}, 8 \mathrm{H}), 6.00(\mathrm{t}, J=3.5 \mathrm{~Hz}, 8 \mathrm{H}), 5.85(\mathrm{G}, \mathrm{s}, 4 \mathrm{H})$, $5.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 4.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 4.37(\mathrm{t}, J=3.5 \mathrm{~Hz}$, $16 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 2.69(\mathrm{~m}, 16 \mathrm{H}), 2.54(\mathrm{~m}, 16 \mathrm{H}),-2.00$ ($\mathrm{G}, \mathrm{s}, 6 \mathrm{H}$); see Table 1 for assignments; MS (Xenon FAB, NOBA matrix) isotope cluster at $m / e 2349(\mathrm{M}, 100)$. Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{128}$ $\mathrm{O}_{24} \div \rho-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}: \mathrm{C}, 77.73 ; \mathrm{H}, 5.92$. Found: $\mathrm{C}, 77.55 ; \mathrm{H}, 5.96$.

Complex 2. $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$. A toluene solution (10 mL) containing 30 mg of mostly EtOAc complex was refluxed for 18 h . The solution went from heterogeneous to homogeneous after 3 h . Hexane was added to precipitate the new carceplex, which was collected on a fine-fritted funnel and dried at $100{ }^{\circ} \mathrm{C}\left(5 \times 10^{-5}\right.$ Torr, 18 h$)$ to give 25 mg of $2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.23(\mathrm{~m}, 24 \mathrm{H}), 7.17(\mathrm{~m}, 16 \mathrm{H}), 6.94(\mathrm{~s}, 8 \mathrm{H}), 6.01$ ($\mathrm{t}, J=3.5 \mathrm{~Hz}, 8 \mathrm{H}$), $5.75(\mathrm{G}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $8 \mathrm{H}), 5.18(\mathrm{G}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 4.45(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 16 \mathrm{H}), 4.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.15(\mathrm{G}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.67(\mathrm{~m}, 16 \mathrm{H}), 2.49(\mathrm{~m}, 16 \mathrm{H}),-1.57(\mathrm{G}, \mathrm{s}, 3 \mathrm{H})$; see Table 1 for assignments; MS (Xenon FAB, NOBA matrix) isotope clusters at m / e 2334 ($M-1,90$), 2243 ($M-G, 100$). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{128}-$ $\mathrm{O}_{24} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}: \mathrm{C}, 77.68 ; \mathrm{H}, 5.87$. Found: $\mathrm{C}, 77.47 ; \mathrm{H}, 5.81$.

Kinetics of Decomplexation of $\mathbf{1 . G}$ and 2.G. Solutions of $2-4 \mathrm{mg}$ of the complex to be studied were dissolved in 0.5 mL of CDCl_{3}. The tubes were placed in the probe of the spectrometer at the desired temperature (calibrated to either methanol or ethylene glycol), and 10-18 spectra were recorded at appropriate time intervals ($500-\mathrm{MHz}$ spectrometer). The first-order decomplexation rate constants were calculated on the basis of spectral changes that accompanied decomplexation and are listed
in Table 1. From these parameters, $\Delta H^{*}, \Delta S^{*}$, and $\Delta G^{*} 298$ for dissociation were calculated. The values are recorded in Table 3.

Determination of Equilibrium Compositions between 1 and $1 \cdot \mathrm{CDCl}_{3}$. Making use of the substantial δ differences in the ${ }^{1} \mathrm{H}$ NMR of empty host 1 and the host of $1 \cdot \mathrm{CDCl}_{3}$ for H^{i} (see Table 1), the relative amounts of 1 and $1 \cdot \mathrm{CDCl}_{3}$ were measured as a function of temperature over the range from 21 to $55^{\circ} \mathrm{C}$. Eight evenly dispersed points of [1• $\left.\mathrm{CDCl}_{3}\right]$ / ($\left.\left[1 \cdot \mathrm{CDCl}_{3}\right]+[1]\right)$ vs temperature provided a straight line with no trends with $R^{2}=0.978$.

Crystal Structure Determinations. Complex $1 \cdot \mathrm{CHCl}_{2} \mathrm{CHCl}_{2} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{5}$ NO_{2} crystallized from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ as colorless parallelepipeds in the monoclinic system $C 2 / c$. Unit cell dimensions are as follows: $a=$ 25.786(2) $\AA, b=19.862(2) \AA, c=29.240(3) \AA, \beta=94.956(3)^{\circ}, V=$ $14919 \AA^{3}, \boldsymbol{Z}=4$. The crystal was examined on a modified Syntex $P \overline{1}$ diffractometer, $\mathrm{Cu} \mathrm{K} \alpha$ radiation, at 298 K . The structure was determined by direct methods. Refinement of $245+77$ parameters (2 blocks, 2944 reflections with $I>3 \sigma(I), 7655$ unique reflections) has an agreement value, R, currently at 0.169 . The centrosymmetric host contains one molecule of $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ at half-occupancy in positions related by the center of symmetry and disordered to give the Cl equal occupancy in each of the three possible positions at C. The crystal contains four nitrobenzene
molecules per host located in the region of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ groups. A notable feature of the $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CCH}_{2}-\mathrm{O}$ bridges is the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle. These are 105(2), 103(2), 103(2), and 99(2) ${ }^{\circ}$. The angles involving $\mathrm{C} \equiv \mathrm{C}$ are nearly 180° and are all bent to about the same degree (172(3), $173(3), 173(3)$, and $\left.175(3)^{\circ}\right)$.

Complex $2 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \cdot 6 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ crystallizes from $\mathrm{CHCl}_{3} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ as colorless plates in the triclinic system $P \overline{1}$. Unit cell dimensions are as follows: $a=11.871(1) \AA, b=17.419(2) \AA, c=20.145(2) \AA, \alpha=$ $87.263(3)^{\circ}, \beta=80.698(3)^{\circ}, \gamma=98.199(4)^{\circ}, V=3970 \AA^{3}, Z=1$. The crystal was examined on a modified Syntex $P \overline{1}$ diffractometer, $\mathrm{Cu} \mathrm{K} \alpha$ radiation at $25^{\circ} \mathrm{C}$. The structure was determined by direct methods. Refinement of $289+89$ parameters (2 blocks, 2970 reflections with I $>3 \sigma(I), 8159$ unique reflections) has an agreement value, R, currently at 0.11 .

This hemicarceplex is centrosymmetric, and the methyl group of the toluene guest is located in the cavity area defined by the four $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ bridges between a plane defined by four bridge terminal oxygen atoms of one bowl and another plane defined by next nearest carbon atoms (to these oxygen atoms) of each of the four butyl bridges. The crystal contains six nitrobenzene molecules per host, located in the region of the $\mathrm{CH}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ groups.

[^0]: Abstract published in Advance ACS Abstracts. August 1, 1994
 (1) Host-Guest Complexation. 68.
 (2) The authors warmly thank the U.S. Public Health Service for su pporting Grant GM-12640.
 (3) National Institutes of Health, National Research Service Award GM13563, 1990-1992.
 (4) Cram, D. J.; Blanda, M. T.; Paek, K.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7765-7773.
 (5) Robbins, T. A.; Knobler, C. B.; Bellew, D. R.; Cram , D. J. J. Am. Chem. Soc. 1993, 116, 111-122.
 (6) Robbins, T. A.; Cram, D. J. J. Am. Chem. Soc. 1993, 115, 12199.

[^1]: (7) Cram, D. J.; Tanner, M. E.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 7717-7727.

[^2]: (8) Gregory, D. H.; Gierig, J. T. Biopolymers 1991, 31, 845-858.
 (9) Cram, D. J.; Choi, H. J.; Bryant, J. A.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7748-7765.

